Group Posts For Parkinson

Stem cell transplants for Parkinson's disease edging closer
November 6, 2014
Lund University
A major breakthrough in the development of stem cell-derived brain cells has put researchers on a firm path towards the first ever stem cell transplantations in people with Parkinson’s disease.
Credit: Image courtesy of Lund University
A major breakthrough in the development of stem cell-derived brain cells has put researchers on a firm path towards the first ever stem cell transplantations in people with Parkinson's disease. A new study presents the next generation of transplantable dopamine neurons produced from stem cells. These cells carry the same properties as the dopamine neurons found in the human brain.
The experiments, performed in rat models of Parkinson's disease, reveal that the latest version of stem cell-derived dopamine cells fully mimic the characteristics and function of the dopamine neurons that are lost in Parkinson's disease. The potentially unlimited supply of transplantable cells, sourced from stem cell lines, opens the door to clinical application on a much broader scale. The results are published in the leading journal in the field, Cell Stem Cell.
"This study shows that we can now produce fully functioning dopamine neurons from stem cells. These cells have the same ability as the brain's normal dopamine cells to not only reach but also to connect to their target area over longer distances. This has been our goal for some time, and the next step is to produce the same cells under the necessary regulations for human use. Our hope is that they are ready for clinical studies in about three years," says Malin Parmar, who led the study conducted at Lund University and at MIRCen in Paris as part of the EU networks NeuroStemCell and NeuroStemcellRepair.
Brain cell transplants with fetal dopamine cells obtained from human embryos have already been performed on a few occasions, with varying results. In the past decade, the EU network TRANSEURO has been working hard to get a new and improved trial underway. That moment is now here. In the coming months a small number of patients will be transplanted with fetal cells in Lund, Sweden and Cambridge, UK.
The fetal dopamine cells that will be used within TRANSEURO, however, carry some restrictions. Firstly, there is the ethical concern of taking tissue from aborted fetuses. There is also the issue of availability of fetal cells, which is often scarce. The logistics surrounding the gathering of cells for any specific transplantation is partly down to luck and circumstance. These concerns will be resolved as the stem cell-derived dopamine cells become available in the clinic, making the treatment accessible for larger patient groups.
The collaborative efforts within EU networks NeuroStemcellRepair and TRANSEURO have put cell therapy on a faster track towards reaching patients. Getting stem cells to become functioning dopamine neurons, the method of delivering them to a specific target, and learning how to get them to integrate in the brain, are all extremely complicated processes. The sharing of ideas and data has been integral to the success of these networks, says Professor Elena Cattaneo, coordinator for NeuroStemcellRepair.
"Collaborative research of this nature is so much more than the results it produces, especially if we consider its potential for expanding the boundaries of knowledge and dissolving cultural barriers. From this perspective, basic research and collaboration among nations stand out once more as something the scientific community should never distance itself from."
Story Source:
The above story is based on materials provided by Lund University. Note: Materials may be edited for content and length.
Journal Reference:
  1. Shane Grealish, Elsa Diguet, Agnete Kirkeby, Bengt Mattsson, Andreas Heuer, Yann Bramoulle, Nadja Van Camp, Anselme L. Perrier, Philippe Hantraye, Anders Björklund, Malin Parmar. Human ESC-Derived Dopamine Neurons Show Similar Preclinical Efficacy and Potency to Fetal Neurons when Grafted in a Rat Model of Parkinson’s Disease. Cell Stem Cell, 2014; 15 (5): 653 DOI: 10.1016/j.stem.2014.09.017
Waiting For Comments
Atypical Parkinsons Vs parkinsons disease: simple tests to differentiate between the two
Two simple tests conducted during the neurological exam can help clinicians differentiate between early-stage Parkinson's disease (PD) and atypical parkinsonism.


1. Ask patients to perform a tandem gait test
Do a tandem gait test. Patients were instructed to take 10 consecutive steps along an imaginary straight, thin line, toe-to-heel. 18% of patients with atypical parkinsonism were able to perform the tandem gait test without a single side step, compared with 92% of patients with PD.
2. Inquire whether they are still able to ride a bicycle
In Atpical parkinsonism side ways or medio-lateral balance is impaired and is a "red flag" of atypical parkinsonism conditions, such as multiple system atrophy (MSA), progressive supranuclear palsy, or vascular parkinsonism.patients with this deficit often compensate by adopting a wide-based walking pattern, probably reflecting widespread pathologic brain involvement of the cerebellum and brain stem. 52% of the atypical parkinsonism patients said they had stopped cycling compared to 2% of those with PD.
.In contrast, patients with Parkinsons Disease develop a shuffling gait, maintaining a narrow distance between their feet. Because medio-lateral balance is preserved, a PD patient may still be able to ride a bicycle even when walking is difficult.
Waiting For Comments
Emerging treatments in Parkinsons disease: Stem Cells transplant
Parkinson's disease is a progressive nervous system disorder that affects how the person moves, including how they speak and write. Symptoms develop gradually, and may start off with ever-so-slight tremors in one hand. People with Parkinson's disease also experience stiffness and find they cannot carry out movements as rapidly as before. The muscles of a person with Parkinson's become weaker and the individual may assume an unusual posture.


Approximately one million adults in the USA are thought to live with Parkinson's disease; over 60,000 are diagnosed annually. The real figure is probably much higher when taking into account those who go undetected. According to the Parkinson's Disease Foundation, the economic toll of the disease in the USA is nearly $25 billion annually, including direct and indirect costs. The average annual medication costs for an American with Parkinson's disease is between $2,500 and $10,000.
There are no cures for Parkinson's disease; howver there are drugs that ease symptoms, but none that slow it down.
Deep brain stimulation can alleviate symptoms of Parkinson's in certain patients
Human embryonic stem cells - precursor cells that have the potential to become any cell of the body - are a promising source of new dopamine cells, but they have proved difficult to harness for this purpose.
Now, a breakthrough study from Lund University in Sweden shows it is possible to get human embryonic stem cells to produce a new generation of dopamine cells that behave like native dopamine cells when transplanted into the brains of rats.

Waiting For Comments